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Abstract

We seek to improve the performance of code clone detection over currently em-
ployed approaches. Almost all of the current approaches for clone detection depend
on a set of predefined features of code, ranging from simple syntactic ones to more
complex features computed using static analysis. All of the current approaches
show very poor performance on more complex types of code clones, however. We
investigate whether using representation learning of code snippets can help develop
a much more efficient and objective feature vector for codes, which contain the
semantic information required for detection of more complex code clones. Feeding
possibly long code snippets to a neural network, in a way they can be processed
efficiently and understood completely, can be very tricky. For this project, we
developed an encoder meant to generate latent representations conditioned on
code snippets for the purpose of detecting whether two code snippets are clones.
Our results suggest that this approach has considerable potential in detecting code
clones.

1 Background

Code clones are segments of code that are highly similar to another piece of code, typically because
one piece was duplicated from the other [5]. When a piece of software contains significant amounts
of duplicated sections of code, the software is likely going to suffer from higher maintenance costs
[5]. Additionally, when code clones are changed inconsistently, these changes are likely to lead to
faults [5]. As such, code clone detection is an active area of research.

There exists a commonly accepted taxonomy for types of code clones, consisting of four types [9].
Type-1 clones are “exact copies of code without any modification except formatting, such as white
space and comments” [1]. Type-2 clones are “copies of code with only variations in formatting and
parameters (i.e., variables, type, function identifiers, or literals)” [1]. Type-3 clones are “copies of
code with modifications including added, deleted, or modified statements” [1]. Type-4 clones are
“code fragments that perform a similar task (similar semantic) but with different implementations”
[1]. Among the four types of clones, type-1 to type-3 clones are more or less syntax-based, while
type-4 clones are semantic-based [1]. More specifically, there is a spectrum of subtypes for type-3
clones that have varying levels of complexity; some of the more complex type-3 clones can look
fairly similar to type-4 clones [10]. In this project, we mainly focus on type-1 to type- 3 code clone
detection. Our project will also include these more complex type-3 clones.



For this project, we aim to see if representation learning through the use of a sequence-to-sequence
model can be used to effectively identify code clones. While machine learning approaches have been
used to detect code clones, to our knowledge, the use of representation learning with a sequence-to-
sequence model has not been attempted before.

2 Related Work

2.1 Classical Approaches

Code clone detection techniques begin by creating code representations before measuring similarity,
and these techniques are classified based on their source code representation. Text-based techniques
apply minor transformations on the source code, and they directly calculate the similarity based on
the text [4]. These text-based clone detection techniques even have poor performance on type 1 and
type 2 clones. Token-based techniques lexically analyze the code and produce a vector of tokens
and then compare the sub-sequences to detect the clone fragments [7]. Matching the sub-sequence
of tokens improves the clone detection power but also increases the false positive rate. Tree-based
techniques measure the similarity of subtrees in tree-like syntactic representations [2]. There are
two popular trees used in representation code: parse trees and Abstract Syntax Trees. The trees
are converted into vectors where each vector represents a code pattern. This approach can lead to
improvements in clone detection. Graph-based techniques use static program analysis to transform
code into a program dependence graph (PCG), and representation of data and control dependencies
[3].

2.2 Machine Learning in Code Clone Detection

Some researchers have focused on utilizing machine learning techniques for code clone detection.
Tsunoda et al. assessed the differences in clone detection methods implemented in fault-prone module
prediction, and they used logistic regression to build the prediction model [15]. Svajlenko et al.
utilized the concept of CloneWorks, and built a clone detection tool by using a Jaccard similarity
metric for a near type-3 clone detection [14]. Sudhamani et al. proposed a code clone detection
approach using K-means clustering of similar code fragments for type-1 to type-3 clones [12].

Other researchers have attempted to use deep learning to create code clone detection models. Li et
al. introduced learning-based detection techniques by leveraging a simple classifier feed forward
neural network conditioned on hand-engineered features. [6]. White et al. use recurrent networks for
automatic feature extraction from code. [16]. Sheneamer et al. use neural networks to encode pairs
of functions to a single vector used for classification. [11]. To our best knowledge, no researchers
have attempted to use generative models to detect code clones.

3 Methodology

3.1 Data Preparation

For our training data, we used Java code snippets collected from the BigCloneBench data set [13].
The data set provides a body of Java functions and corresponding cloned functions that we can easily
query from. We used Spoon [8] to generate the AST trees for the collected Java source code. We then
used preorder traversal on the AST tree nodes to generate sequences of tokens for each function. We
only kept the 2,000 most frequent tokens, and replaced the rest with a specific UNKNOWN token.
Also, for training and test purposes, we only considered functions with maximum sequence length of
2,500 tokens. As such, we ended up with 12,000 functions and 5.5 million clone pairs. Each training
and test batch consists of 32 code pairs, 8 for type-1 clones, 8 for type-2 clones, 8 for type-3 clones,
and 8 for non-clone pairs.

3.2 Model and Training

The model we used for our project is a sequence-to-sequence model augmented with a feed-forward
neural network meant to determine whether two given functions are clones. Fig. 1 depicts a diagram
of the model. The encoder in our model is a GRU-RNN which is used to produce a representation of
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Figure 1: Our Sequence-to-Sequence Model. The red and blue units are unrolled units for the encoder
and decoder respectively. The orange unit shows a Bahdanau-style attention layer (without the query),
and the pink unit shows the feed forward classifier. In the decoder, when training, the input at timestep
t is the function’s token at time t, while in inference, it is the output of the decoder at timestep t− 1.

a given function’s code. On top of the encoder there is an attention layer. For every time step of the
RNN, the attention layer takes all the outputs of the time step and generates a single context vector
based on the particular attention weights. This context vector acts as the representation of the input
Java function. The decoder, also a GRU-RNN, takes these representations as input and produces
function code. We also used a 2-layer feed-forward neural network to determine the clone type of
two functions given their representations. The encoder uses an embedding with size of 64, and both
the encoder and the decoder use unit size of 1024. The training loss on a function pair consists of 2
reconstruction loss of the form of categorical cross entropy for each of the functions, and a weighted
classification loss for the classifier network, also a categorical cross entropy loss. We trained the
entire model in an end-to-end fashion.

4 Results

4.1 Clone Identification

Fig. 2 in the Appendices section shows the confusion matrix for the classification task. This shows
not only that the model generally understands the notion of two functions being code clones, but that
it can distinguish between different types of clones. As one expects most of the mistakes happen
between non-clone pairs and type-3 clones, which are the most syntactically different clone types.

Figure 2: Confusion matrix for determining whether 2 functions are not clones (N), type-1 clones
(T1), type-2 clones (T2) or type-3 clones (T3).
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If the type of code clone is ignored, the code clone recall on test data is 91.6% and the accuracy is
95.5%. It is important to note that the test data contains same number of code clone types, therefore
the result is not biased towards a specific code clone type. To see examples of correctly and wrongly
detected code clones, see the Appendices section.

4.2 Reconstruction Accuracy

We also computed the reconstruction accuracy of the function vector sequences using the BLEU
metric. On average, the BLEU score for reconstruction is 0.69, which shows the decoder is not
ignored in the training process and is involved and has helped the model for learning the task of
classifying clone types by providing constructive gradients so that the encoder generates better
representations that are easier for the classifier to classify.

4.3 Function Representations

Intuitively, the encoder would represent functions with similar syntax and/or semantics to adjacent
points. To test this, we calculated the Euclidean distance between representations of function pairs.
Table 1 shows the mean of this distance for each pair type. These results suggest that the encoder
learns to represent both semantics and syntax of the code snippets in an intuitive regime.

Additionally a two-sided t-test revealed that between all pairs of clone types besides Type 1 and
Type 2, these distances are different in a statistically significant manner. The fact that the difference
of distances between clone types 1 and 2 is not significant also suggests that the encoder probably
attends more towards the functionality (semantics) of the code rather than its syntax.

Clone Type Mean Distance
Type 1 0.39
Type 2 0.38
Type 3 4.79

Non-Clone 5.28
Table 1: The Euclidean distance between representations of pairs of functions

5 Conclusions

We investigated whether representation learning was a useful approach in detecting type-1, type-2,
and type-3 code clones. We created a sequence-to-sequence model with a feed-forward neural
network that took in a pair of code segments and classified the code clone type (or whether the pair
had no code clones). Due to the long length of sequences and the time needed to train the model on
our hardware, out results may not wholly reflect the full potential of the model. Our results, however,
do seem to suggest that this technique has promise and that it is worth exploring further.
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Appendices

An example of correctly identified code clones. As one can see, these are essentially type 3 clones for
copying a file.

p u b l i c s t a t i c boolean d e c o d e F i l e T o F i l e ( S t r i n g
i n f i l e , S t r i n g o u t f i l e ) {

boolean s u c c e s s = f a l s e ;
j a v a . i o . I n p u t S t r e a m i n = n u l l ;
j a v a . i o . Ou tpu tS t r eam o u t = n u l l ;
t r y {

i n = new Base64 . I n p u t S t r e a m ( new j a v a . i o .
B u f f e r e d I n p u t S t r e a m ( new j a v a . i o .
F i l e I n p u t S t r e a m ( i n f i l e ) ) , Base64 .
DECODE) ;

o u t = new j a v a . i o . B u f f e r e d O u t p u t S t r e a m (
new j a v a . i o . F i l e O u t p u t S t r e a m ( o u t f i l e
) ) ;

byte [ ] b u f f e r = new byte [ 6 5 5 3 6 ] ;
i n t r e a d = −1;
whi le ( ( r e a d = i n . r e a d ( b u f f e r ) ) >= 0) {

o u t . w r i t e ( b u f f e r , 0 , r e a d ) ;
}
s u c c e s s = t rue ;

} ca tch ( j a v a . i o . IOExcep t ion exc ) {
exc . p r i n t S t a c k T r a c e ( ) ;

} f i n a l l y {
t r y {

i n . c l o s e ( ) ;
} catch ( E x c e p t i o n exc ) {
}
t r y {

o u t . c l o s e ( ) ;
} catch ( E x c e p t i o n exc ) {
}

}
re turn s u c c e s s ;

}

p r i v a t e s t a t i c vo id c o p y F i l e ( F i l e s r c , F i l e d e s t ,
i n t b u f S i z e , boolean f o r c e ) throws

IOExcep t i on {
i f ( d e s t . e x i s t s ( ) ) {

i f ( f o r c e ) {
d e s t . d e l e t e ( ) ;

} e l s e {
throw new IOExcep t i on ( " Cannot

o v e r w r i t e e x i s t i n g f i l e : " +
d e s t . getName ( ) ) ;

}
}
byte [ ] b u f f e r = new byte [ b u f S i z e ] ;
i n t r e a d = 0 ;
I n p u t S t r e a m i n = n u l l ;
Ou tpu tS t r eam o u t = n u l l ;
t r y {

i n = new F i l e I n p u t S t r e a m ( s r c ) ;
o u t = new F i l e O u t p u t S t r e a m ( d e s t ) ;
whi le ( t rue ) {

r e a d = i n . r e a d ( b u f f e r ) ;
i f ( r e a d == −1) {

break ;
}
o u t . w r i t e ( b u f f e r , 0 , r e a d ) ;

}
} f i n a l l y {

i f ( i n != n u l l ) {
t r y {

i n . c l o s e ( ) ;
} f i n a l l y {

i f ( o u t != n u l l ) {
o u t . c l o s e ( ) ;

}
}

}
}

}

Examples of undetected clones. This is unexpected since the two codes are exactly the
same. The authors’ guess is that because the code involves two dimensional array access, which is a
less frequent pattern than many other patterns, the encoder has not learned to encode it correctly and
therefore the classifier is unable to understand the meaning of the code using the representation.

p u b l i c Ma t r ix t r a n s p o s e ( ) {
Ma t r i x X = new Ma t r ix ( n , m) ;
double [ ] [ ] C = X. g e t A r r a y ( ) ;
f o r ( i n t i = 0 ; i < m; i ++) {

f o r ( i n t j = 0 ; j < n ; j ++) {
C[ j ] [ i ] = A[ i ] [ j ] ;

}
}
re turn X;

}

p u b l i c Ma t r ix t r a n s p o s e ( ) {
Ma t r i x X = new Ma t r ix ( n , m) ;
double [ ] [ ] C = X. g e t A r r a y ( ) ;
f o r ( i n t i = 0 ; i < m; i ++) {

f o r ( i n t j = 0 ; j < n ; j ++) {
C[ j ] [ i ] = A[ i ] [ j ] ;

}
}
re turn X;

}
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Examples of two non-clone pairs that are detected as type 3 clones by the model. Interestingly, the
function email_get_public_hash uses hashing, which is what the function hash does.

p r i v a t e S t r i n g hash ( S t r i n g message ) {
MessageDiges t md = n u l l ;
t r y {

md = MessageDiges t . g e t I n s t a n c e ( "SHA1" ) ;
} ca tch ( NoSuchAlgor i thmExcep t ion e ) {

throw new A s s e r t i o n E r r o r ( " Can ’ t f i n d t h e
SHA1 a l g o r i t h m i n t h e j a v a . s e c u r i t y
package " ) ;

}
S t r i n g s a l t S t r i n g = S t r i n g . va lueOf ( 1 2 3 4 5 ) ;
md . u p d a t e ( s a l t S t r i n g . g e t B y t e s ( ) ) ;
md . u p d a t e ( message . g e t B y t e s ( ) ) ;
byte [ ] d i g e s t B y t e s = md . d i g e s t ( ) ;
S t r i n g B u f f e r d i g e s t S B = new S t r i n g B u f f e r ( ) ;
f o r ( i n t i = 0 ; i < d i g e s t B y t e s . l e n g t h ; i ++)

{
i n t l owNibb le = d i g e s t B y t e s [ i ] & 0 x0f ;
i n t h i g h N i b b l e = ( d i g e s t B y t e s [ i ] >> 4) &

0 x0f ;
d i g e s t S B . append ( I n t e g e r . t o H e x S t r i n g (

h i g h N i b b l e ) ) ;
d i g e s t S B . append ( I n t e g e r . t o H e x S t r i n g (

lowNibb le ) ) ;
}
S t r i n g d i g e s t S t r = d i g e s t S B . t o S t r i n g ( ) . t r i m ( )

;
re turn d i g e s t S t r ;

}

p u b l i c s t a t i c S t r i n g e m a i l _ g e t _ p u b l i c _ h a s h ( S t r i n g
e m a i l ) {

t r y {
i f ( e m a i l != n u l l ) {

e m a i l = e m a i l . t r i m ( ) . toLowerCase ( ) ;
CRC32 c r c 3 2 = new CRC32 ( ) ;
c r c 3 2 . r e s e t ( ) ;
c r c 3 2 . u p d a t e ( e m a i l . g e t B y t e s ( ) ) ;
MessageDiges t md5 = MessageDiges t .

g e t I n s t a n c e ( "MD5" ) ;
md5 . r e s e t ( ) ;
re turn c r c 3 2 . g e t V a l u e ( ) + " " + new

S t r i n g ( md5 . d i g e s t ( e m a i l . g e t B y t e s
( ) ) ) ;

}
} catch ( E x c e p t i o n e ) {
}
re turn " " ;

}

7


	Background
	Related Work
	Classical Approaches
	Machine Learning in Code Clone Detection

	Methodology
	Data Preparation
	Model and Training

	Results
	Clone Identification
	Reconstruction Accuracy
	Function Representations

	Conclusions

